Virulence regulation in Citrobacter rodentium: the art of timing
نویسندگان
چکیده
The mouse enteric pathogen Citrobacter rodentium, like its human counterpart, enteropathogenic Escherichia coli, causes attaching and effacing lesions in the intestinal epithelium of its host. This phenotype requires virulence factors encoded by the locus for enterocyte effacement (LEE) pathogenicity island. For timely expression of these virulence determinants at the site of infection and for efficient delivery of some virulence factors into epithelial cells, C. rodentium utilizes a positive regulatory loop involving the LEE-encoded regulatory proteins Ler, GrlA and GrlR to control LEE expression. Several transcription factors not encoded by LEE, some of which respond to specific environmental signals, also participate in this regulatory loop. Recently, we identified a non-LEE encoded, AraC-like regulatory protein, RegA, which plays a key role in the ability of C. rodentium to colonize the intestine. RegA functions by activating the transcription of a number of horizontally acquired operons encoding virulence-associated factors, such as autotransporters, fimbriae, a dispersin-like protein and its transporter. In addition, RegA represses transcription of a number of housekeeping genes. Importantly, RegA requires a gut-specific environmental signal, bicarbonate, to exert its effects on gene expression. In our proposed model, when C. rodentium senses bicarbonate ions in the gastrointestinal tract, RegA directs the bacterium to reduce the production of proteins involved in normal cellular functions, while enhancing the production of factors required for colonization and virulence.
منابع مشابه
Draft Genome Sequence of Citrobacter rodentium DBS100 (ATCC 51459), a Primary Model of Enterohemorrhagic Escherichia coli Virulence
Citrobacter rodentium is a Gram-negative bacterium which causes transmissible murine colonic hyperplasia and models the virulence of enterohemorrhagic Escherichia coli in vivo. Thus, C. rodentium is used to study human gastrointestinal disease. We present the draft genome sequence of C. rodentium strain ATCC 51459, also known as DBS100.
متن کاملRole of RpoS in the virulence of Citrobacter rodentium.
Citrobacter rodentium is a mouse enteropathogen that is closely related to Escherichia coli and causes severe colonic hyperplasia and bloody diarrhea. C. rodentium infection requires expression of genes of the locus of enterocyte effacement (LEE) pathogenicity island, which simulates infection by enteropathogenic E. coli and enterohemorrhagic E. coli in the human intestine, providing an effecti...
متن کاملCitrobacter rodentium Relies on Commensals for Colonization of the Colonic Mucosa
We investigated the role of commensals at the peak of infection with the colonic mouse pathogen Citrobacter rodentium. Bioluminescent and kanamycin (Kan)-resistant C. rodentium persisted avirulently in the cecal lumen of mice continuously treated with Kan. A single Kan treatment was sufficient to displace C. rodentium from the colonic mucosa, a phenomenon not observed following treatment with v...
متن کاملContribution of the pst-phoU operon to cell adherence by atypical enteropathogenic Escherichia coli and virulence of Citrobacter rodentium.
Strains of enteropathogenic Escherichia coli (EPEC) generally employ the adhesins bundle-forming pili (Bfp) and intimin to colonize the intestine. Atypical EPEC strains possess intimin but are negative for Bfp and, yet, are able to cause disease. To identify alternative adhesins to Bfp in atypical EPEC, we constructed a transposon mutant library of atypical EPEC strain E128012 (serotype O114:H2...
متن کاملGenome-Wide Analysis of the Pho Regulon in a pstCA Mutant of Citrobacter rodentium
The phosphate-specific transport operon, pstSCAB-phoU, of Gram-negative bacteria is an essential part of the Pho regulon. Its key roles are to encode a high-affinity inorganic phosphate transport system and to prevent activation of PhoB in phosphate-rich environments. In general, mutations in pstSCAB-phoU lead to the constitutive expression of the Pho regulon. Previously, we constructed a pstCA...
متن کامل